Theory and Application of Sonoelasticity Imaging
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ABSTRACT: Sonoelasticity imaging uses low-frequency (100-Hz) vi-
brations in tissue and Doppler imaging of vibration patterns to detect
and define hard tumors. Fundamental theoretical considerations of
sonoelasticity imaging are reviewed in this article, to predict the image
of a small hard tumor in a background of softer elastic tissue. Compar-
isons from experimental work on elastic phantoms and from finite
element analyses confirm the ability of vibration images to define
small inhomogeneities. © 1997 John Wiley & Sons, Inc. Int J Imaging Syst
Technol, 8, 104-109, 1997
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I. INTRODUCTION

Sonoelagticity is a rapidly evolving medical imaging technique
for visualizing hard tumors in tissues. In this novel diagnostic
technique, a low-frequency vibration is externally applied to ex-
citeinternal vibrations within the tissue under inspection. A small
stiff inhomogeneity in surrounding tissue appears as a disturbance
in the normal vibration eigenmode pattern. The low-frequency
vibrations in deep tissue can be detected using Doppler ultra-
sound. By employing a properly designed scanning and detection
algorithm, a real-time vibration image can be made. For a com-
prehensive review of the subject, please refer to Ophir et al. [1]
and Geo et al. [2].

Il. THEORY

We model a tumor as an elastic inhomogeneity inside a lossy
homogeneous elastic medium. For example, the media stiffness
is a constant E,, except the small area around (x,, Y,) has the
stiffness E, + E’. When we apply boundary conditions and a
driving vibration force on the medium, we want to compare the
vibration patterns of this medium with and without the inhomoge-
neity.

For simplicity, we will consider the two-dimensional case.
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Since low-frequency longitudinal waves have wavelengths that
are too large compared with organs of interest at the frequencies
used in sonoelasticity imaging [3], we have chosen to concentrate
on shear waves. The shear wave equation for a genera linear
and isotropic material is [4]:
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where the shear wave velocity C is given by:
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If we define a specia function ’y(;), which is nonzero only in
the tumor region, we can write one equation for the whole me-
dium:

C¥x) = CI1 + y(X)] €)

where C, is the shear wave velocity in the homogeneous area.
So instead of writing two equations for both the homogeneous
and the inhomogeneous region, we may write one equation for
the entire medium:
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Including a relaxation term to account for losses [5], and with
the assumption of the sinusoidal time dependence ¢ = £ exp(iw,t),
the equation above becomes:
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Figure 1. Inhomogeneous phantom vibration pattern. The source vibration is located on the right-hand side of the images. The inhomogeneity
is located on the middle upper part of the images, which shows little or no vibration (black area). Source vibration frequency is (a) 37 and (b)
201 Hz.

V% + K2 £ - iK? wave Equation (5). To find the solution, we can split the total

[1+yM] QL+ yX)]

£§=0 ®) wave into incident and scattered wave:
E = &i + gs (6)

Thereis no direct and closed form solution to the inhomogeneous The incident wave satisfies the homogeneous wave equation,

(a) (b)

Figure 2. Theoretical inhomogeneous vibration pattern. The source vibration is located on the right-hand side of the images. The inhomogeneity
is located on the middle upper part of the images, which shows little or no vibration (black area). Source vibration frequency is (a) 37 and (b)
201 Hz.
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Figure 3. Liver scan experiment. The orientation of the scan is such
that the anterior abdominal muscles are located at the top of the
image, the diaphragm at the bottom. Image shows only regions of
vibration within the right lobe of a normal liver.

which can be solved with a given set of boundary conditions. The
scattered wave due to the inhomogeneity satisfies the following
equation:

Vi, + K%, — % €= BONE + £ (7)

where ,B(i) isafunction of the tumor size, stiffness, and location.
If the tumor is small, we may assume that the scattered wave is
much smaller than the incident wave and discard the term

,6’(§)§S on the right-hand side. (This is analogous to the Born
approximation for longitudinal wave scattering [6].) The inhomo-
geneous equation can thus be solved. The final solution is given
by a sum of an infinite series for the cost of a regular two-
dimensional geometry with prescribed boundary conditions as
given by Gao et al. [7,8].

lll. EXPERIMENT

Phantom, in vitro and in vivo experiments were conducted to
study the possibility of tumor detection by sonoelasticity. The
real time images on the Acuson 128X P scanner are conventional
B-scan images, but with the addition of specially modified green-
scale overlay. The brightness of the green-scale is proportional
to the amplitude of the vibration. For printing reproducibility, we
converted the green images to black and white images for al the
experimental results shown with normal B-scan speckle sup-
pressed (lowered to dark gray values). Thus, the brightness of
the gray-scale is proportional to the amplitude of the vibration.
Since the theory given above is two dimensional, we con-
structed long rectangular phantoms. The dimension of the phan-
tom was about 5 X 5 X 30 cm (width X height X length).
Two kinds of experiments were conducted. The first employed a
homogeneous phantom; the second included an inhomogeneity.
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The homogeneous phantom was constructed using 500 g of water,
500 g of ethylene glycol, 70 g of gelatin, 100 g of glycerol, 100
g of formalin, and 10 g of barium sulfate. A gel phantom (1.5%
agar, 1.5% gelatin, 0.1% barium sulfate) was used for the second
experiment. A harder gel tube (3% agar, 3% gelatin, 0.1% barium
sulfate) was buried in the phantom as the inhomogeneity. The
Young's modulus of the hard gel tube was about four times that
of the phantom. The diameter of the hard gel tube was 0.6 cm.

The inhomogeneous phantom experiment result is shown in
Figure 1. A vibration was applied from the right hand side of the
image. The experiment shown in Figure 1(a) and 1(b) used 37
and 201 Hz vibration, respectively. Notice the black middle upper
part is just where the inhomogeneity was located. The corre-
sponding theoretical simulation images using solutions to Equa-
tion (7) and parameters matched to the phantom [8] are shown
in Figure 2. The inhomogeneity appears as dark region, which
indicates low vibration amplitude. The vibration pattern issimilar
to that in Figure 1.

For the in vivo liver experiment, a low-frequency vibration
(about 20 Hz) was conducted into a volunteer’s liver (informed
consent had been obtained from the volunteer). The vibration
imageinsidethe liver is shown in Figure 3, and the corresponding
theoretical simulation is shown in Figure 4. The vibration source
was applied near the top of the images. Although the simulation
neglects the layered abdominal wall, the irregular liver shape,
and ill-posed boundaries, comparing the results with Figure 3,
the patterns are similar and display simple modal patternsthat are
indicative of vibration within a relatively homogeneous medium.

Some in vivo prostate experiments were performed by con-
ducting vibration along the transrectal probe and by activating
Doppler color detection of vibration. Figure 5(a) is a B-scan
image showing homogeneous structure. Figure 5(b) is the corre-
sponding sonoelasticity image showing a decreased vibration in
one region, which was later determined by guided biopsy and
pathology to be a tumor present in that location.

Figure 4. Liver scan simulation using our theory for a homogeneous,
bounded medium with a Gaussian vibration source.
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Figure 5. (a) Transverse, midsection B-scan of a prostate with equivocal gray-scale echogenicity. (b) Real-time, in vivo sonoelasticity image
of the same prostate as in (a). Color is displayed in regions with greater vibration amplitude. A tumor (T) is delineated and depicted as a void
in the vibration pattern.
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Figure 6. Finite element analysis of a prostate, without tumor, under-
going small vibrations, sagital view, x-direction motion.

IV. FINITE ELEMENT ANALYSIS

Finite element analysis tools can further verify the theory. It can
also help to study the behavior of tissue vibration under more
complicated situations, such as irregular boundary conditions,
irregular geometry of the object, and irregular shape of the inho-
mogeneity.

We employed an elliptical sphere as a model for the prostate.
NASTRAN (McNeill-Schwindler) was used for the analysis. The
maximum length of the x-axis was 6 cm, that of y-axis was 4.8
cm, and that of z-axis was 4 cm, which were close to the average
size of the prostate. It is aso divided into different parts with
different Young's modulus [7]. About 2000 tetra elements were
used, and boundary conditions were established to mimic the
pelvic cavity structures.

The simulation results with an excitation frequency of 100
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Figure 7. With tumor, sagital view, x-direction motion. Notice the
tumor (upper middle region) has made the vibration amplitude around
it lower, compared with the previous figure.
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Figure 8. Vibration-amplitude curve due to inhomogeneity. The thick
solid curve is from theory, and the thin one is from finite element
analysis. They show very good correspondence. (The dash line was
drawn to show the zero base line.)

Hz (typically used in the clinical trial) are presented in Figures
6 and 7. Figure 6 is the case without a tumor, showing the
sagittal view of the vibration along x axis. Figure 7 shows a
corresponding pattern with a tumor. We can see that the tumor
lowered the vibration significantly around it. (In thefigures, red
represents the highest vibration amplitude; then it decreases as
magenta, yellow, green, etc. Blue and violet represent the low-
est amplitude. Usually there is about one to two orders of
magnitude difference between the highest and the lowest am-
plitude.) Thus, the basic prediction of the previous theory can
be also applied to the complicated prostate system for in vivo
study; that is, we should look for the low-vibration amplitude
regions for hard tumors.

We further compared the predictions of our theory and that
of finite element analysis. Specifically, we quantified the change
in vibration amplitude resulting from a tumor. Our approach is
to vary the area and stiffness of the lesion, and compare the
localized vibration amplitude change due to the inclusion, as
predicted by the finite element analysis and the theory. To do this,
we modeled the 5 X 5 X 30-cm phantom described previously by
both finite element analysis and by our elastic-Born approxima-
tion. The elastic properties of the inhomogeneous tumor were
varied.

The results from the theory and the finite element analysis
correspond very well (Fig. 8). As expected, the larger the abso-
lute value was of the inhomogeneity factor, the larger was the
vibration amplitude change. A hard lesion produces vibration
amplitude drop, and interestingly, a soft lesion produces a
vibration amplitude increase. The slope of the curve increases
when the vibration frequency increases, but the basic charac-
teristics discussed above stay the same. These results indicate
that smaller hard inhomogeneities may be better discriminated
at higher-vibration frequencies. However, in practice, greater
losses limit the upper range of useful vibration frequencies,
such that in practice frequencies below 200 Hz are commonly
used.



V. CONCLUSION

Sonoelasticity imaging was performed on phantoms, prostate
invitro, and liver in vivo. Results were compared against theo-
retical predictions. The theory was found to satisfactorily pre-
dict the essential features of sonoelasticity imaging. Finite ele-
ment analysis was also employed to model vibrations inside
tissue. The results corresponded well with our theoretical pre-
dictions. These results may be useful in optimizing vibration
and imaging systems such that small, discrete, hard tumors can
be routinely identified in clinical applications of sonoelasticity

imaging.
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